New Heterocyclic Dianions:^{1a} N.M.R. Characterization of 1,3-Diphenylbenzo[c]**thiophene Dianion, a Stable 4nn Charged System Containing Sulphur**

Y. Cohen, J. Klein," and M. Rabinovitz"

Department of Organic Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

1,3-Diphenylbenzo[c]thiophene dianion, **(1 12-** a member of the novel series of *4nn* polyheterocyclic dianions, has been prepared and characterized by n.m.r.; it shows a high stability and a peculiar charge distribution pattern in which the sulphur atom polarizes the charge towards the α -positions.

troscopy.^{1b— ϵ} In contrast, the scarcity of information concerning heterocyclic $4n\pi$ charged systems is striking. Recently, we

Much effort has been directed towards the preparation and spectroscopy a series of nitrogen-containing heterocyclic characterization of polycyclic characterization of polycyclic characterization of polycyclic characteriza characterization **of** polycyclic charged systems, and many **4nn** dianions.2 The preparation of **4nn** polyheterocyclic dianions containing sulphur in their path of electron delocalization was a challenge, in view of the relative weakness of the carboning heterocyclic $4n\pi$ charged systems is striking. Recently, we sulphur bond. Such compounds are of major importance in have been able to prepare and characterize by n.m.r. fuel and coal chemistry,³ yet the only examp fuel and coal chemistry,³ yet the only example of a $4n\pi$

Compound (T/K)	$N.m.r.$ parameters ^{a,b}	Centre of gravity of the spectrum
(1)	¹ H: 7.92 and 7.17 (AA'BB', H-4,7; H-5,6), 7.78 (dt, J_1 8.1, J_2 1.1, H-2', H-6'), 7.58 (tt,	
(293)	J_1 , 7.2, J_2 , 1.1, H-3', H-5'), 7.45 (tt, J_1 , 7.3, J_2 , 1.3, H-4')	7.61
	^{13}C ; 135.9 (C-3a,7a), 134.8 (C-1'), 134.5 (C-1,3), 129.5 (C-2',6'), 129.5 (C-3',5'), 127.9 (C-4'), 124.7	
	$(C-5,6)$, 121.5 $(C-4,7)$	129.8
$(1)^{2-}$	1 H: 6 6.84 (br t, J 6.7, H-3', 5'), 6.57 and 5.97 (AA'BB', H-4,7, H-5,6), 5.75 (t, J 6.8, H-4')	
(293)	¹³ C: 141.1 (C-3a, 7a), 135.9 (C-1'), 127.3 (br s, C-3', 5'), 115.1 (br s, C-2', 6'), 113.9 (C-5, 6), 108.4	
	$(C-4,7)$, 104.7 $(C-4')$, 70.7 $(C-1,3)$	116.0
(253)	1 H: 7.03 (d, J 8.1, H-2'), 6.82 (t, J 8.0, H-3'), 6.72 (t, J 7.9, H-5'), 655, 5.96 (AA'BB', H-4,7,	
	$H-5,6$, 5.74 (d, J9.3, H-6'), 5.68 (t, J6.8, H-4')	6.36
	¹³ C: 141.0 (C-3a,7a), 135.4 (C-1'), 128.4 (C-3'), 126.9 (C-5'), 115.7 (C-6'), 113.8 (C-2'), 113.7	
	$(C-5,6)$, 108.4 $(C-4,7)$, 104.1 $(C-4')$, 71.3 $(C-1,3)$	115.9

^a Chemical shifts in p.p.m. downfield from external Me₄Si; coupling constants in Hz. ^b The n.m.r. spectra were obtained with a Bruker SY-200 pulsed FT spectrometer equipped with a pulse programmer operating at 200.133 and 50.32 MHz for ¹H and ¹³C n.m.r., respectively. The free induction decay (FID) signals were digitized and accumulated on an Aspect-2000 computer and fieldlfrequency regulations were maintained by 2H locking. *c* The doublets attributed to H-2' and H-6' are not observed due to proximity to the coalescence temperature.

Figure 1. The 2D-C/H correlation spectrum of the anion $(1)^{2-}$ as disodium salt in $[{}^{2}H_{8}]$ tetrahydrofuran at 253 K.

polycyclic dianion containing sulphur, characterized by n.m.r., is benzo[b]thiophene. However, benzo[b]thiophene dianion has only limited stability.4

We report here the preparation and n.m.r. characterization (1D- and 2D-n.m.r.) of **1,3-diphenylbenzo[c]thiophene** dianion $(1)^{2-}$. Reduction to the dianion is accomplished by sodium metal in [²H₈]tetrahydrofuran at -40° C. In 1,3-diphenylbenzo[c]thiophene (1) there are no α -hydrogen atoms present, thus ortho-metallation is excluded. We believe that this is the reason for the enhanced stability of $(1)^{2-}$ as compared with benzo[b]-thiophene dianion. The ¹H and ¹³C n.m.r. parameters of compound (1) \dagger and the dianion (1)²⁻ are summarized in Table 1. The dianionic nature of $(1)^{2-}$ was deduced from the high-field shifts and the spectral patterns, as well as by quenching experiments. Relaxation measurements (T_1) (by inversion recovery^{7a}) were used to distinguish between the two non-equivalent ortho-hydrogen atoms (H-2' and H-6' ; see structure in Figure 1) and the different types of hydrogen atom to which the **AA'BB'** pattern of the 1H n.m.r. spectrum of $(1)^{2-}$ is attributed. Owing to the proximity of the corresponding protons, one doublet (at δ 7.03) and one part of the $AA'BB'$ structure (at δ 6.55) have the shortest T_1 . We therefore assign the doublet at δ 7.03 to H-2' and the absorption at 6 6.55 to H-4 and -7. **A** full assignment of the 1H n.m.r. spectrum of $(1)^{2-}$ is then easily achieved from double resonance experiments. The carbon spectrum is assigned from results of two different ¹³C/¹H correlation experiments optimized for $1J$ $13C/1H$ and $3J$ $13C/1H$ (Figure 1). The difference in ¹H and ¹³C chemical shifts between (1) and (1)²⁻ is shown in Figure 2. The variations of the proton chemical shifts are small and the centre of gravity of the 1H n.m.r. spectrum of $(1)^{2-}$ appears at low field $(0, 6.36)$. On this basis the dianion cannot be classified as a paratropic system. Such a paratropic system would be expected to exhibit an enhanced high-field ¹H n.m.r. shift beyond the contribution of the charge effect.⁸

The carbon spectrum of $(1)^{2-}$ reveals two interesting phenomena. *(a)* There are specific carbon atoms (C-1 and -3) for which the chemical shift difference between (1) and $(1)^{2-}$ $[\Delta\delta$ ⁽¹³C)] is much larger than for the other carbon atoms. *(b)* The total high-field shift of the carbon spectrum $[\Sigma \Delta \delta (^{13}C)]$ is 278 p.p.m.

In the 1,3-diphenylbenzo[c] furan dianion $(2)^{2-}$, ^{1a} the oxa analogue of $(1)^{2-}$, the peak at highest field attributed to C-4 and -7 appears at **6** *ca.* 99, whereas in (1)2- the peak attributed to C-1 and -3 appears at higher field, *i.e.* δ 71. The $\Delta\delta$ ⁽¹³C) value for C-1 and -3 of $(2)^{2}$ is *ca.* 28 p.p.m., whereas in $(1)^{2}$ the corresponding chemical shift difference is *ca.* 64 p.p.m. This observation can be interpreted in terms of a significant polarization of charge in $(1)^{2-}$ towards the position α to sulphur, much more pronounced in this case than in the

^{† 1,3-}Diphenylbenzo[c]thiophene (1), m.p. 118 °C (lit.,⁵ 120 °C) was prepared by the reaction of o -dibenzoylbenzene with P_2S_5 in dry pyridine (reflux 4 h, inert atmosphere).6

Figure 2. The differences between the chemical shifts of the dianion $(1)^{2-}$ and the neutral compound (1) in $[{}^{2}H_{8}]$ tetrahydrofuran $[\Delta\delta({}^{1}H)$ and (in square brackets) $\Delta\delta(^{13}C)$].

analogue **(2)2-.** However, a change in hybridization of C-1 and -3 from sp^2 to sp^3 -like may also contribute to this high-field shift.

It is accepted that a sulphur atom stabilizes a negative charge, although the mechanism of this stabilization is controversial.9 It is therefore surprising that the total highfield shift of the carbon spectrum of $(1)^{2-}$ is so large $[\Sigma\Delta\delta$ (¹³C) 278 p.p.m.]. For comparison, in the dianion (2)²⁻ $\Sigma\Delta\delta$ (13C) is only 238 p.p.m.⁸ These large values seem to corroborate the quenched paratropicity of these dianions8c,1a

The reduction of **(1)** induces an increase in the order of the $C(3)-C(1')$ and $C(1)-C(1')$ bonds, thus increasing the energy barrier to free rotation of the phenyl groups about these bonds. This fact is manifested in the ${}^{1}H$ and ${}^{13}C$ n.m.r. spectra (Figure 1). The free energy of activation $(\Delta G^{\ddagger} 295)$ for rotation about these bonds is *ca*. 13 \pm 1 kcal mol⁻¹,^{7b} comparable with the energy barrier for o -terphenyl dianion.¹⁰ It should be noted that temperature variations have some effect on the ion-pairing equilibrium of the charged system, which may in turn influence the chemical shifts of the interchanging sites.2d This implies that only a rough estimate of the energy barrier for the rotation can be made.

Received, 30th March 1987; Corn. 400

References

- 1 (a) Part 4, Y. Cohen, J. Klein, and M. Rabinovitz, *J. Chem. SOC., Perkin Trans. 2,* in the press. For general reviews, see (b) R. N. Young, *Prog. Nucl. Magn. Reson. Spectrosc.,* 1978, **12,** 261; (c) M. Rabinovitz, I. Willner, and A. Minsky, *Acc. Chem. Res.,* 1983, 16, 296; (d) K. Miillen, *Chem. Rev.,* 1984, 84, 603; **(e)** K. Miillen and W. Huber, *Acc. Chem. Res.,* 1986, 19, 300.
- 2 (a) A. Minsky, **Y.** Cohen, and M. Rabinovitz, *J. Am. Chem. SOC.,* 1985, **107,** 1501; (b) Y. Cohen, A. Y. Meyer, and M. Rabinovitz, *ibid.,* 1986, 108, 7039.
- 3 M. Nishioka, M. L. Lee, and R. N. Castle. Preprints, ACS Division of Petroleum Chemistry, 1986, 31(4), 827.
- 4 Y. Cohen, J. Klein, and M. Rabinovitz, *J. Chem. Soc., Chem. Commun.,* 1985, 1033.
- *5* L. Lepage and Y. Lepage, *J. Heterocycl. Chem.,* 1978, 15, 1185.
- 6 M. J. Haddadin, B. **J.** Agha, and R. F. Tabri, *J. Org. Chem.,* 1979, 44,494.
- 7 (a) **See** for example H. Gunther, 'NMR Spectroscopie,' Wiley, Chichester, 1980, p. 225; (b) for calculation of the barrier see pp. 242-243.
- 8 (a) **A.** Minsky, **A.** Y. Meyer, and M. Rabinovitz, *Tetrahedron,* 1985, 41, 785; (b) M. Rabinovitz and Y. Cohen, Preprints ACS Division of Petroleum Chemistry, 1986, 31(4), 777; (c) B. Eliasson, **U.** Edlund, and K. Miillen, *J. Chem. SOC., Perkin Trans. 2,* 1986, 937.
- 9 See for example (a) J. M. Lehn and G. Wipff, *J. Chem. Soc., Chem. Commun.,* 1975, *800; J. Am. Chem. Soc.,* 1976,98,7498, and references cited therein.
- 10 W. Huber, A. May, and K. Miillen, *Chem. Ber.,* 1981,114, 1318.